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ABSTRACT
A vector space approach to image reconstruction is derived
and introduced. The continuous-domain image is assumed
to belong to a reproducing kernel Hilbert space and the
sampling process is shown to correspond to an appropri-
ate orthogonal projection. The values at the interpolating
grid are shown to correspond to a set of inner product
calculations, giving rise to a minimax solution for anℓ2

approximation problem. A tight upper bound on the ensued
error is then derived and demonstrated. Examples of image
resizing show that the proposed method yields better results
than presently available methods, including the cubic B-
spline method, in terms of SNR.

I. INTRODUCTION

Image interpolation is a fundamental task in image process-
ing applications. Such applications include rotation, trans-
lation, resizing and derivative evaluation to name a few.
The underlying idea in current interpolation methods cor-
responds to regularity properties that are assumed on
the continuous-domain image. For example, a piecewise-
polynomial model is often used, implying that the original
continuous-domain image is smooth, up to a certain degree.
Several interpolation methods such as nearest-neighbor,
linear, Dodgson, Keys, Schaum, B-spline of higher orders,
Meijering and o-MOMS assume such a model [1]–[5].
Furthermore, for a sufficiently smooth input signal, these
very methods comply with the following upper bound on
the approximation error

‖x − x̂‖L2
≤ C · T L ·

∥

∥

∥
x

(L)
∥

∥

∥

L2

as T → 0. (1)

Here,x is the original continuous-domain signal,x̂ is the
interpolated signal andT is the sampling interval. In such
a formulation, the parametersL andC are the approxima-
tion order and the proportional constant, respectively; they
provide a means for comparing the various reconstruction
(interpolation) methods. Recently, it was suggested to min-
imize the Sobolev norm of the reconstruction error instead
of its L2 norm; this approach was then applied to image
reconstruction from singular points in a Gaussian scale
space [6].

However, within the context of image processing applica-
tions, the interpolation stage yields a discrete-domain rather
than a continuous-domain signal and noL2 or Sobolev
measures, but anl2 measure, is to be considered instead.

In this work, anℓ2 interpolation method is derived and
introduced for minimizing the maximum possible approxi-

mation error. Also, the piecewise-polynomial model is gen-
eralized by considering 2D Sobolev signals of finite support.
Such an assumption on the continuous-domain image has
been made in several image processing algorithms [7],
[8] and it is adopted here as well. Within this setting,
the ideal sampling process is shown to correspond to a
set of inner product calculations; the same holds for the
interpolated values. This signal representation interpretation
to the sampling and to the interpolation processes gives rise
to an alternative interpolation approach. A detailed analysis
is given for the 1D case, followed by 2D scaling examples.

II. SAMPLING OF SMOOTH SIGNALS

We consider one-dimensional Sobolev spaces defined over a
finite open supportΩ = (−π, π). A Sobolev space of order
p is denoted byHp

2 (Ω) and it consists of all finite energy
functions for which their firstp derivatives are of finite
energy as well [9]. We adopt the following inner product

〈x,y〉Hp

2 (Ω) =

p
∑

n=0

〈

x
(n),y(n)

〉

L2(Ω)
. (2)

A Sobolev space is a reproducing kernel Hilbert space,
suggesting an orthogonal projection interpretation for the
ideal sampling process.

Lemma 1: The reproducing kernel ofH2(Ω) (p = 1) is
given by

K (s, t) =
cosh (|s − t| − π)

2 sinh (π)
, (3)

wheres, t ∈ Ω.
Proof: Let x ∈ H2(Ω) be an arbitrary function. Then,

it can be expressed by

x(s) =
∑

n

an · ejns, (4)

where equality holds point-wise. The sampled valuex(t)
is a linear bounded functional and by Riesz representation
theorem can be expressed by means of an inner product
calculation

x(t) = 〈x (s), K (s, t)〉H2(Ω) . (5)
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Fixing the parametert, one can expressK(s, t) by means
of its Fourier coefficientsb, yielding

x(t) =
∑

n

an · ejnt

=

∫

Ω

x(s) · K(s, t) ds +

∫

Ω

x′(s) · K ′(s, t) ds

=
∑

n,m

anbm(1 + n · m)

∫

Ω

ej(n−m)s ds

= 2π
∑

n

anbn(1 + n2). (6)

x is arbitrary yieldingbn = (2π)−1 · e−jnt/(1 + n2). That
is,

K(s, t) =
1

2π

∑

n

ejn(s−t)

1 + n2
. (7)

Utilizing the Fourier transform relatione−|t| F
−→ 2/(1+ω2)

and the aliasing effect occurring in the time domain, one can
show the equivalence of this last expression with (3).

Corollary 1: The reproducing kernel ofHp
2 (Ω) is implic-

itly given by

K(s, t) =
1

2π

∑

n

ejn(s−t)

1 + n2 + . . . + n2p
. (8)

Let Λ = {tn}n=0,...,N−1 be a finite set of sampling
points. It then follows that the corresponding sampling
kernels{K(s, tn)}n=0,...,N−1 constitute a Riesz basis for
their span (the values of a Sobolev function at distinct points
are linearly independent)

S = Span {K(s, tn)}
N−1
n=0 . (9)

This sampling space is a subspace ofHp
2 (Ω). The Gram

matrix of these kernels can be shown to comply with

G(m, n) = K(tm, tn) m, n = 0, . . . , N − 1. (10)

The orthogonal projection ofx onto the sampling space is
given by

PSx =

N−1
∑

n=0

an · K(·, tn), (11)

where a = G−1c and c denotes the ideal samples ofx

according toΛ. The unknown portion ofx that is not
captured by the sampling process isPS⊥x = x − PSx.

III. INTERPOLATION

Interpolation is the task of evaluating a continuous-domain
function at predefined points while having its sampled
version at other points as the only available data. A com-
mon approach to this task relies on kernels that have
attractive properties in terms of approximation order, of
proportional constant and of minimal support (1). In this
work, however, a different approach is taken in which anℓ2

rather than anL2 measure is considered. Specifically, the
interpolated values alone are compared with the true values
while no continuous-domain approximation is considered.
The motivation for such an approach stems from image
processing applications for which the interpolation stage
yields a discrete-domain rather than a continuous-domain
signal.

Theorem 1: Let Λ = {tn}n=0...N−1 be a sampling grid
and letc be the ideal samples ofx ∈ Hp

2 (Ω) . Givenτ /∈ Λ,
the solution of

arg min
x̂(τ)

max
c,‖x‖

H
p
2 (Ω)

≤L

∣

∣x(τ) − x̂(τ)
∣

∣ (12)

is given by
x̂(τ) = cT G−1b, (13)

whereG is given by (10),bn = K(tn, τ) and K is given
by (8). L is an arbitrary constant that complies withL2 ≥
cT G−1c.

Proof: Recalling Lemma 1, the valuex(τ) is given
by

x(τ) =
〈

x(s), K(s, τ)
〉

Hp

2 (Ω)
. (14)

In addition, we recall thatΛ defines a sampling spaceS.
Therefore, evaluatingx(τ) is equivalent to the approxima-
tion of (14) while havingPSx as the only available data.
This signal representation interpretation for the interpolation
problem can be applied now to Theorem 1 of [10]. That is,
the minimax solution of (12) is given by

x̂(τ) =
〈

PSx(s), PSK(s, τ)
〉

Hp

2 (Ω)
. (15)

The sampling functions{K(s, tn)} constitute a Riesz basis
for S and (13) follows accordingly. The constantL, upper-
bounding the Sobolev norm ofx, is required for defining a
robust minimax objective function [11].

Theorem 1 describes a minimax approach to interpola-
tion. Given a point to be evaluated, it defines an interpolat-
ing kernel to be applied to the sampled data

k = G−1b. (16)

The support of this kernel may be as large as the size of
the sampled data; that is, every sample value is significant
to the interpolation task. Nevertheless, such kernels havein
practice a relatively small support (Fig. 1); the reason for
that resides in the structure ofG−1 which has its significant
values located near the main diagonal. As can be seen from
Fig. 1, the support ofk increases as the Sobolev order
becomes larger. Also, the ensued minimax kernel for the
case ofp = 1 corresponds to the average of only the two
adjacent samples (provided the interpolation point is located
at the middle). The minimax solution of Theorem 1 is also
element-wise optimal [11], implying that simultaneously
designing several interpolation kernels can be performed
separately, one kernel at a time. Theorem 1 also gives rise
to an interpolating function. Lettn be then-th sampling
point. Then,

φn(t) =

N−1
∑

m=0

G−1
n,m · K(tm, t). (17)

This interpolating function is applied to the sample value
originating fromtn and it consists of a linear combination
of the sampling kernels, i.e.φ ∈ S. Every sample point
has its own interpolating function; ifΛ is uniform, then
the ensued interpolation functions resemble each other and
posses a cyclic shift-invariant structure. Fig. 2 compares
the proposed interpolating function with its B-spline coun-
terpart for several Sobolev orders. Following Fig. 2(a), the
minimax approach yields an interpolating function that is
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Fig. 1. Minimax interpolation kernels for Sobolev spaces. Here, the
support of the functions isΩ = (−π, π), the sampling interval isT = 0.1
and the interpolating point isτ = 0.05. The interpolation kernelk is given
by (16) and it is depicted here for Sobolev orders ofp = 1, 2, 3.

very similar to the hat B-spline function. However, these
two functions are different as can be observed from the
derivative ofφn depicted therein as well. Furthermore, the
minimax approach yields finite support functions regardless
of the regularity constraint (i.e., Sobolev order) which isin
contrast to B-spline interpolating functions. An upper bound
on the approximation error is derived next.

Theorem 2: Let Λ = {tn} andΓ = {τm} be a sampling
and an interpolation grid, respectively; and letc ∈ R

N and
d ∈ R

M be the ideal samples ofx ∈ Hp
2 (Ω) overΛ andΓ,

respectively. Then,
∥

∥

∥
d − d̂

∥

∥

∥

2

ℓ2
≤ B ·

(

‖x‖2
Hp

2 (Ω) − cT G−1c
)

, (18)

whered̂ is the minimax approximation ford (Theorem 1),
G is given by (10) andB is the largest eigenvalue of the
matrix

H(k, l) =

= K(τk, τl) −

N−1X
m,n=0

K(tm, τk) · G−1(m,n) · K(tn, τl)

k, l = 0 . . . M − 1. (19)
Proof: We consider first a single interpolation point

and identify the worst-case input signal possible. Clearly,
this signal satisfies

x = PSx + PS⊥x, (20)

where PSx is a known continuous-domain signal and is
given by (11). The approximation error is given by

∣

∣

∣
d − d̂

∣

∣

∣
=

∣

∣

∣
〈PS⊥x, PS⊥K(·, τ)〉Hp

2 (Ω)

∣

∣

∣

≤ ‖PS⊥x‖Hp

2 (Ω) · ‖PS⊥K(·, τ)‖Hp

2 (Ω) (21)

whereτ is the interpolating point. Now,

‖PS⊥x‖2
H

p
2 (Ω) = ‖x‖2

H
p
2 (Ω) − c

T
G

−1
c

‖K(·, τ )‖2
H

p
2 (Ω) = K(0, 0)

‖PSK(·, τ )‖2
H

p
2 (Ω) =

X
m,n

K(tm, τ ) · G−1(m, n) · K(tn, τ ),
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(a) Sobolev orderp = 1.
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Fig. 2. Minimax interpolating functions for Sobolev spaces. Here, the
support of the functions isΩ = (−π, π) and the sampling interval is
T = 0.5. The interpolating function is given by (17). Shown here is a
comparison between the proposed interpolating function and the B-spline
interpolating function. Here,p denotes the Sobolev order of the input
signal.

and the upper bound for this single interpolation point
follows immediately for the choice of

B = ‖PS⊥K(·, τ)‖2
Hp

2 (Ω)

= ‖K(·, τ)‖2
Hp

2 (Ω) − ‖PSK(·, τ)‖2
Hp

2 (Ω) (22)

This upper bound is tight and is achieved by signals of the
form

x = PSx + α · PS⊥K(·, τ), (23)

where α is a scalar that determines the Sobolev norm
of x. When considering several interpolating points, the
aproximation error is given by

∥

∥

∥
d − d̂

∥

∥

∥

2

ℓ2
=

M−1
∑

m=0

|〈PS⊥x, PS⊥K(·, τm)〉|2

≤ B · ‖PS⊥x‖
2
Hp

2 (Ω) , (24)

where B is the upper frame bound of the functions
{PS⊥K(·, τm)}m=0,...,M−1 and is determined by the largest
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Fig. 3. An upper bound on the interpolation error, given by Theorem
2. Shown here isB for interpolating by a factor of two from a uniform
sampling grid. As the sampling interval shortens, this portion of the upper
bound tends to lower values. Here,p denotes the Sobolev order of the
input signal.

eigenvalue of their Gram matrix

H(k, l) = 〈PS⊥K(·, τk), PS⊥K(·, τl)〉Hp

2 (Ω)

= 〈K(·, τk), PS⊥K(·, τl)〉Hp

2 (Ω)

= 〈K(·, τk), K(·, τl) − PSK(·, τl)〉Hp

2 (Ω)(25)

It then follows that the worst-case input signal achieving
this upper bound is of the form

x = PSx +

M−1
∑

m=0

βm · PS⊥K(·, τm), (26)

where β is the eigenvector corresponding toB that also
guarantees the Sobolev norm ofx.

As the sampling interval shortens, more information onx

is available and one may expect the upper bound of Theorem
2 to become smaller. This characteristics is manifested in
both B andcT G−1c. Fig. 3 depictsB as a function of the
sampling interval for a uniform grid and for an interpolation
by a factor of two. Fig. 4 depicts‖PSx‖

2
= cT G−1c in

a similar manner for the case ofx = (2π)−1/2; as the
sampling interval shortens, this portion of the upper bound
approaches the value of‖x‖2

Hp

2 (Ω) = 1.
The generalization to images is carried out by considering

2D Sobolev functions. Letν = (ν1, ν2) be a tuple of
nonnegative integers where|ν| = ν1 + ν2 and let

Dν =
∂ν1

∂α
·
∂ν2

∂β
. (27)

We consider the two-dimensional Sobolev space of order
p ≥ 2 defined over a finite open supportΩ = (−π, π) ×
(−π, π) (unlike the 1D case, a 2D Sobolev space of order
p = 1 is not a reproducing kernel Hilbert space). This space
consists of functionsx(α, β) that satisfyDν

x ∈ L2(Ω) for
all possibleν satisfying |ν| ≤ p. The corresponding inner
product is given by [9]

〈x,y〉Hp

2 (Ω) =
∑

{ν: 0≤|ν|≤p}

〈Dν
x, Dν

y〉L2(Ω). (28)
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Fig. 4. An upper bound on the interpolation error, given by Theorem
2. Shown here is‖PSx‖2 = cT G−1c for the case ofx = (2π)−1/2

and for a uniform sampling grid. As the sampling interval shortens, this
portion of the upper bound approaches the value of‖x‖H

p
2 (Ω) = 1, where

p denotes the Sobolev order of the input signal.

This inner product gives rise to the following reproducing
kernel

K(α, β, x, y) =
1

4π2

∑

n,m

ejn(α−x)+jm(β−y)

∑

{ν: 0≤|ν|≤p} n2ν1m2ν2
, (29)

which is not separable inα andβ. For example, a Sobolev
order ofp = 2 yields

K(α, β, x, y) =
1

4π2

∑

n,m

ejn(α−x)+jm(β−y)

1 + n2 + m2 + n2m2 + n4 + m4
.

(30)
Next, the minimax approach is compared with the cubic

B-spline approach. A uniform sampling grid is assumed
and an interpolation by a factor of three is examined. Fig.
5 depicts a cervical Pap smear image. This image was
downsampled by a factor of three and was then interpolated
accordingly. The minimax interpolation approach, shown
in Fig. 6, yields SNR=30[dB] while the well known cu-
bic B-spline method yields only 29.7[dB]. Table I further
compares the minimax and the cubic B-spline interpolation
error for several additional images. The minimax method
was designed for minimizing theℓ2 error and it is shown
to yield better results in terms of SNR.

IV. CONCLUSIONS

An ℓ2 approach to image reconstruction has been intro-
duced. The continuous-domain images are assumed to be-
long to a reproducing kernel Hilbert space and the sampling
process is shown to correspond to an appropriate orthogonal
projection. It has been also shown that the values at the
interpolating grid correspond to a set of inner product
calculations, and that this signal representation interpre-
tation can be utilized to derive a minimax solution for
the correspondingℓ2 approximation problem. To provide a
quantitative measure for the efficiency of the new method,
a tight upper bound on the approximation error has been
derived and demonstrated. Numerical examples show that
the proposed interpolation method yields better results in
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Fig. 5. A cervical Pap smear image.

Fig. 6. Interpolation by a factor of three. The proposed approach, shown
here forp = 3, yields SNR=30[dB] while the cubic B-spline interpolation
method yields only 29.7[dB].

terms of SNR compared to presently available techniques,
and could be useful in various practical applications.

ACKNOWLEDGEMENT

This work was supported in part by the HASSIP Research
Program of the European Commission, by the H. & R.
Sohnis Cardiology Research Fund, and by the Ollendorff
Minerva Centre. Minerva is funded through the BMBF.

REFERENCES

[1] A. K. Jain,Fundamentals of Digital Image Processing.
Englewood Cliffs, NJ: Prentice-Hall, 1989.

[2] T. M. Lehmann, C. Gönner, and K. Spitzer, “Survey:
Interpolation methods in medical image processing,”
IEEE Trans. Medical Imaging, vol. 18, pp. 1049–1075,
November 1999.

TABLE I

A COMPARISON OF INTERPOLATION METHODS BY A FACTOR OF THREE

Image Cubic B-spline Minimax

SNR (dB) SNR (dB)

Brain MRI 17.1 17.3

Sailboat 21.5 21.7

Man 20.4 20.6

Fishing boat 20.3 20.4

House 22.8 22.9

Lena 24.4 24.5

[3] E. H. W. Meijering, K. J. Zuidervel, and M. A.
Viergever, “Image reconstruction with symmetrical
piecewise nth-order polynomial kernels,”IEEE Trans.
Image Processing, vol. 8, pp. 192–201, February 1999.
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